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SUMMARY 

A numerical simulation of a plane turbulent wake at  a very low Reynolds number has been performed 
using finite volume methods. The wake was produced by allowing two turbulent boundary layers, simulated 
separately in advance, to interact downstream of the trailing edge of a thin flat plate. A number of innovative 
numerical techniques were required in the simulation, such as the provision of fully turbulent time- 
dependent inflow data from a separate simulation, advective outflow boundary conditions and the 
approximate representation of an internal solid surface by a method which is computationally efficient. 
The resulting simulation successfully reproduced many of the statistical properties of the turbulent 
near-wake flow at low Reynolds number. 
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1. INTRODUCTION 

The direct or large-eddy simulation of the turbulent wake is a demanding but useful exercise, 
since it allows the detailed study of a flow in which rapid streamwise adjustment is present in 
a turbulent flow. For this reason the near-wake region, which is critical for the prediction of 
wing lift, is difficult to model theoretically. The simulation of a turbulent wake demands a 
number of developments in the technique of large-eddy simulation. The flow is spatially 
developing and has a strong cross-stream inhomogeneity, so that only the spanwise dimension 
can be treated as statistically homogeneous. Time-dependent turbulent inflow and outflow 
boundary conditions are required and it is vital to allow the very-near-wake region to influence 
the region upstream of the trailing edge through the pressure field. 

We have simulated the simplest wake, that behind a flat plate with statistically identical 
boundary layers on either side. The flow is incompressible, in contrast with existing simulations 
by Chen el al.,’ Lele’ and Compte et uI.,~ who have studied transition in compressible wakes. 
The geometry of our computation is shown in Figure 1.  The simplicity of the geometry has 
allowed a fast method to be developed for the simulation of the flow in the U-shaped region 
around the trailing edge. The numerical methods employed for the present simulation are based 
on those originally proposed by Lilly4 on the basis of Arakawa’s’ concepts. In this approach a 
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Figure 1 .  Geometry of the boundary layer (precursor) and near-wake (successor) simulations 

linear finite volume scheme is devised that has the property of conserving all components 
(ui, u:,  u:) of the kinetic energy, and hence also the total kinetic energy, in the discretization of 
the advection term of the Navier-Stokes equations. It is thus impossible for energy to be created 
or destroyed by dissipative errors in this term, in spite of the formally low order of the 
interpolations. Dispersive errors are present, however, and the fourth-order error in the 
discretization of the viscous term can also dissipate energy artificially. 

Bryan6 showed that the method could be extended straighforwardly to stretched meshes in 
three dimensions. Following application of similar techniques to simulations of meteorological 
flows by Smagorinsky' and others, DeardorP set up the first true large-eddy simulation of a 
channel flow. The pivotal work of Schumann,' who gave the fullest description of the numerical 
method we employ here, has led to finite volume techniques being applied in numerous 
large-eddy simulation studies, such as those by Grotzbach," Mason,' Klein and Friedrich," 
Gao el  d . 1 3  and others. At the highest resolutions currently practical (and provided that the 
Reynolds or Rayleigh numbers are low enough) it is possible to omit the subgrid-scale model 
from the computation: Gertz et and G a ~ r i l a k i s ' ~  have used finite volume methods in their 
direct numerical simulations of very different turbulent flows. 

The discretization is performed on a staggered mesh, with stretching employed in both 
streamwise (x) and wall-normal (y) dimensions. The stretching must be gentle (the ratio of 
adjacent cell widths below 1.1) in order to avoid compromising the second-order accuracy of 
the scheme. The form of interpolation not only conserves mass and momentum volume-by- 
volume, but also conserves the squares of the velocity components in the advection term. The 
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linear differencing leads to a very simple seven-point pressure star which can be solved efficiently 
by vectorizing direct solvers. 

2. METHODS 

2.1. Finite volumes 

The code is a finite volume discretization of the incompressible Navier-Stokes equations in 
conservative form, 

~ = - -  a' + H i ,  
aui 
at axi 

where 

The time stepping used is second-order open Adams, 

where the superscripts indicate the time step. 
All terms in the momentum equations are treated explicitly, apart from the pressure term 

dp /ax i .  The pressure is unknown at the current step and is therefore omitted from the time 
advancement (3), resulting in the computation of a provisional velocity uf which does not obey 
continuity but which is related to the true velocity uy" at the next time step through a 
decomposition into its divergence-free and irrotational parts. 

Thus u l t  is the projection of u: into the subspace of divergence-free vector functions. 
Taking the divergence of (4) and using the fact that the new velocity field uy+' must be 

divergence-free, i.e. 

au;+ 1 

ax,  
~- - 0, 

we obtain the Poisson equation for the pressure field p, 

The solution to this equation in discrete form is unique, just as the solution of the analytical 
equation is unique, provided that the surface integral of 1.4: over the boundaries of the 
computational domain is zero. Note that the fieldp is neither p"' ' nor p", though to second order 

L L 
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To find p ,  equation (6) is Fourier transformed in z, decomposing into a set of elliptic equations 
of the form 

Since the difference operator is used to compute =-derivatives of p in configuration space, rather 
than a true analytical derivative, the operator K ,  is related to the Fourier wave number k, by 

K, = 2 sin(nk,/N,)/Az. (9) 
These equations are solved by a vectorized cyclic reduction technique based on the algorithm 
of Schwarztrauber,16 which allows for stretching of the mesh in both the x- and the y-direction 
provided that the domain and the mesh remain rectangular. The method is formally identical 
to that used by Gavri laki~,’~ though the boundary conditions are clearly very different. The 
efficiency of the pressure solution algorithm is vital to our simulation, as is the case for other 
large-eddy simulations. The pressure solution demanded 50% of the CPU time in our simulation; 
with a less efficient solver it is easy for this part of the computation to overwhelm the remaining 
explicit calculations and make LES impractical. It is for this reason that LES and DNS have 
till now been performed in relatively simple geometries only. 

2.2. Inflow boundary 

The code used in this study was originally developed for the simulation of turbulent flow 
through a square or rectangular duct and has been extensively proved in that context by 
Ga~r i lak is . ’~  To simulate an open, spatially developing flow such as the wake, the solid walls 
of the duct were replaced by inflow, outflow and free-slip boundaries 

The wake is formed from the interaction of flows which have developed upstream, in the 
present case turbulent boundary layers. To simulate such a flow numerically, fully turbulent 
inflow data are required which have been derived from a separate simulation, called the precursor 
simulation by Tsai et ul.,” of a low-Reynolds-number turbulent boundary layer. The boundary 
layer simulation used was one similar to those of Yang and Voke,I8 though performed on a finer 
mesh. A Blasius layer at the inflow of this simulation was destabilized rapidly by superimposing 
pseudorandom numbers and developed the characteristics of a young turbulent boundary layer 
within the computational domain, while the pseudorandom ‘free-stream turbulence’ decayed 
steadily and acquired the characteristics of genuine turbulence. 

At the inflow plane of the wake simulation the three velocity components were specified by 
reading one transverse plane (a slice) of velocity data from the boundary layer simulations at 
each time step. The net mass flux into the computational volume was thus fixed by the 
independent precursor simulation. The transverse velocities just outside the computational 
volume were also fixed from the slices of transferred data. The data were taken from a plane 
towards the downstream end of the precursor simulation where the flow is fully turbulent, but 
a safe distance upstream of the outflow boundary of the precursor simulation. The two separate 
and uncorrelated sets of velocity data needed to provide inflow conditions for the upper and 
lower halves of the wake simulation were taken from the same precursor simulation at 
well-separated times in it history, some 1609,/u, apart. 

2.3. Outflow boundary 

An outflow boundary should be passive, reflecting no energy back into the computation, but 



NUMERICAL SIMULATION OF A PLANE TURBULENT WAKE 38 1 

precise non-reflecting boundary conditions are difficult to implement in a strongly time- 
dependent computation with a broad spectrum of waves present. Instead, we have implemented 
advective conditions similar to those recommended by Bottaro.” This boundary condition 
exhibits very satisfactory behaviour for the wake simulation and has been employed for other 
studies using our code by Yang and Voke,” Gao et al.13 and Lo.” The flow field within a few 
cells of the outflow boundary itself should be treated with caution, but otherwise the outflow 
boundary condition appears to be entirely passive. 

At the outflow plane the advective boundary condition takes the form 

aui aui 
-+u,-=oo. at ax 

The convecting velocity U, is fixed at each time step by averaging the streamwise velocity over 
a transverse plane. The streamwise gradient is computed by a second-order upwind difference 
and used in an explicit Adams formula, since the outflow velocity must be fixed in advance of 
the pressure solution at each time step and no velocities from the current step are yet known: 

Equation (1 1) does not guarantee that the inflow and outflow at a particular time step are equal, 
since the outflow velocity is fixed with reference to values at  previous steps. Any imbalance 
between the net inflow Ui, and outflow Vou, passing through the boundaries of the computational 
volume produces a singular problem for the pressure solver. The outflow velocity is therefore 
factored uniformly over the outflow plane to ensure that its integral balances the integrated 
inflow: 

2.4. Side boundaries 

At the side boundaries an impermeable free-slip condition was used which fixed the normal 
velocity v to zero but allowed the streamwise and spanwise velocities to take any values. The 
side boundaries were removed some distance from the principal region of interest by stretching 
the y-mesh. The side boundaries should also strictly allow some outflow or inflow to accommo- 
date growth of or entrainment into the wake, with the amount of outflow or inflow through the 
side boundaries being determined by the requirement for a uniform pressure field in the far field. 
Although such side flows are of importance for the simulation of free jets21 and are also useful 
in the simulation of boundary layers,20 they were not incorporated in this simulation of the 
wake, since the mean pressure gradient induced is low. 

2.5. Pressure boundary conditions 

The simulation of the wake includes a portion of the trailing edge of the plate, so that the 
flow downstream of the trailing edge may influence the boundary layers before they reach the 
trailing edge. This is most important physically, but results in a technical problem. The cyclic 
reduction pressure solver can only deal with the solution of the Poisson or Helmholz equation 
on a rectangular domain, without internal boundary conditions: the boundary conditions are 
enforced on the rectangular exterior boundary only. 
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In the finite volume code the pressure is solved by Fourier transformation in the spanwise (z) 
direction, leaving a set of inhomogeneous Helmholz equations including one Poisson equation 
for the wave number k, = 0. These equations are solved subject to the Neumann boundary 
condition 

= 0, dP 
dn 

where n is the co-ordinate normal to the boundary. This boundary condition is artificial, since 
the pressure at the boundary adjusts itself to ensure that continuity is satisfied there, as 
elsewhere.22 The normal derivative of the pressure is therefore fixed by the normal velocity 
specified at the boundary and the values of the physical force terms, advective and viscous, which 
in general are non-zero. 

In practice, in a staggered mesh, finite volume code such as the one used for this study, the 
actual physical value of the normal pressure gradient is irrelevant; only the difference 

is meaningful, since altering the value of u.* alters the source term for the pressure in the Poisson 
equation in a way that precisely compensates for the change in the boundary condition. The 
pressure solution is the same regardless of the values of u,* on the boundaries. The artificial 
boundary condition (13) is used to alter the solution star at the edge of the domain to reflect 
the special form of the continuity equation at the boundary and remove the pressure value at 
the point just outside the boundary from the computation entirely. Our approach to the pressure 
solution is therefore to impose the desired physical boundary condition appropriate for u, on 
u,* before the divergence of u.* is computed. The pressure star is then altered at the boundary 
to incorporate the homogeneous Neumann condition (1 3). The normal pressure gradient is thus 
absent from the equations representing the finite difference Laplacian of p. This strategy is the 
most efficient since it means that the pressure solution proceeds in the same manner regardless 
of the type of boundary being treated. The normal velocity u, is zero for a solid or impermeable 
stress-free boundary and non-zero for inflow or outflow boundaries, but the pressure solution 
algorithm remains unaltered. 

2.6. The internal boundary 

The accurate solution of the pressure field at each of the large number of time steps of the 
simulation is critical: in a geometry such as that shown in Figure 1, the pressure solution might 
be expected to dominate the computer time usage. We have been able to maintain the very high 
speed of the Fourier/cyclic reduction solver in spite of the presence of a section of the trailing 
edge in the wake simulation, by using an innovative approximation for the pressure boundary 
conditions at the plate surface. 

The intruding trailing edge (or internal surface) interferes with the simple pressure solution 
strategy outlined in the preceding subsection. The velocity component normal to the internal 
surface must be zero and hence the source term of the pressure equation must be altered. The 
standard method of dealing with a problem such as this is by use of an influence matrix: the 
intruding internal surface is treated as a small perturbation to the linear pressure problem for 
the flow without the internal surface. Large-eddy simulations have been performed using this 
method by Klein and Friedrich.” The pressure equation is solved without the perturbation and 
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the influence matrix is then used to compute alterations to the original source terms depending 
linearly on the resulting pressure gradient at the position of the internal surface and on the 
external flows. The Poisson equation is then solved again, producing a solution with zero flow 
through the internal surface. 

The technique has a disadvantage for our purpose. Apart from the expense of the matrix 
computations, which could be borne, the additional pressure solution to be performed at each 
time step adds a large overhead to the CPU time. Since an exactly zero mass flux through the 
internal surface was not vital to the aims of the simulation, an approximate technique was 
sought, having most of the advantages of the influence matrix method without the computational 
expense. In order to maintain the efficiency of the direct pressure solver, the boundary condition 
on the intruding trailing edge of the plate (known as the internal surface) must be approximate. 
The momentum conditions are maintained exactly, with stresses being computed just as at an 
external boundary, but the mass flux through the surface is not precisely zero. 

The method devised uses the pressure gradient on either side of the plate at the previous time 
step as a first-order estimate of the appropriate value for u* at the current step. Note that different 
values are stored for each side of the plate, even though it is of zero thickness: these values are 
then used to compute the pressure source field. The resulting pressure solution allows a small 
but non-zero mass flow through the plate, the normal velocity u having a random sign and 
being of order At compared with other local velocities. For the present simulation these velocities 
were always less than 1% of the values that occurred downstream of the plate and so less than 
0.1 YO of U,. Since these non-zero values were random, the time-averaged flux through the plate 
was extremely close to zero. Higher-order multistep methods for predicting the pressure gradient 
at the internal surface have been tested and were found to be unstable. 

The chosen method only involves a tiny amount of additional storage and computation. The 
CPU time per step is virtually unaltered compared with solving the unmodified flow. All other 
boundary conditions at the internal surface are imposed just as at any other solid boundary, so 
that the momentum equations include stresses computed in the same way as they would be for 
an exact solution with u = 0 on the internal surface. 

2.7. Stability limits 

The time-stepping scheme is second-order open Adams, consistent with the accuracy of the 
spatial interpolation. The viscous terms as well as the advection terms are treated explicitly, 
leading to the presence of a viscous stability limit as well as a CFL limit on the time step. In 
practice, at the low Reynolds number being simulated, the CFL limit is the more pressing, 
though this can change if a subgrid-scale model is included in the calculation. In both the 
precursor and successor simulations the CFL limit was strictly adhered to. Precise matching of 
the meshes and time steps in the precursor and successor computational volumes was found not 
to be possible, since the CFL limit would quickly be violated in the successor simulation. This 
occurs because the very fine mesh needed in the boundary layer simulation extends past the 
trailing edge, out into the centre of the wake where significant cross-stream velocities build up. 

The change in the physical conditions along the line of the solid surface as the flow moves 
past the trailing edge therefore gives rise directly to a numerical problem. The simplest solution 
is to decrease the time step in the successor simulation, bringing the CFL number back within 
the stability limit. This can be done provided that the slices of data from the precursor simulations 
are reused, so that the inflow velocity conditions do not alter over several of the smaller time 
steps of the successor. 

I t  was found that to bring the CFL number back within acceptable limits, the time step would 
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have to be decreased by a factor of about 16 in the successor simulation, leading to a very 
expensive simulation of the wake. It was known that this penalty arose from excessive 
cross-stream resolution downstream of the trailing edge, in a region where the high shear of the 
wall layers upstream had already been strongly diluted. To reduce the cost of the successor 
simulation, the cross-stream mesh was coarsened in this region, so that the time step in the 
successor simulation only needed to be a quarter of the time step in the precursor simulations. 

2.8. Meshing 

The computational mesh in the precursor simulation was identical with the finer of those 
used by Yang and Voke2' for transition studies, while the boundary layer was produced by 
provoking an immediate transition of a Blasius boundary layer. The computational box was 
4608, x 238, x 15.48,, using the boundary layer momentum thickness 8, at the trailing edge 
in the wake simulation as a unit. The mesh was 255 x 56 x 48. The slices of data used to define 
the inflow for the wake simulation were read from the 200th x-mesh plane, which is at a position 
928, upstream of the outflow boundary layer simulation. 

The mesh for the precursor simulation was uniform in both the x- and the z-direction but 
uniformly stretched in the y-direction, with a stretching ratio of 1.08. The smallest Ay nearest 
the wall was 0.023S0, or about unity in wall units (v/u,), and the largest value of Ay was 1.88,. 
Ax was 1-83, and Az was 0.323,. 

In the successor simulation the computational mesh was stretched in both the x- and 
the y-direction, with the y-mesh corresponding to that used in the precursor over most of the top 
half of the domain, but with a symmetric mesh added to the bottom half of the domain. The 
computation box was 2158, x 468, x 15.43,. 

In the central region, close to the trailing edge and along the centreline of the wake, the 
precursor y-mesh was found to be too fine, resulting in an excessive reduction of the time step 
size to avoid Courant violations by the growing u in the near wake along the centreline. Eight 
control volumes close to the centreline were therefore merged in the successor simulation, both 
above and below the line of the plate, giving a total of 104 y-meshes in the successor simulation. 
Overall, the mesh was 127 x 104 x 48. The streamwise mesh in the successor simulation was 
also compressed (with a mesh compression ratio of 1/1.05), from Ax = 1.89, down to Ax = 
0.48, at the trailing edge which is 308, downstream of the inflow boundary, and maintained 
this resolution for a further 28,. Thereafter the x-mesh stretched again with a stretching ratio 
of 1.03, reaching Ax = 5.78, at the outflow boundary of the successor wake simulation domain. 

Since the Reynolds number was very low (Reg, at the trailing edge was 908) no subgrid-scale 
model was included in this simulation. 

3. RESULTS 

3.1. The computations 

Spatial dimensions are given in terms of 8, at the trailing edge. To convert to wall units, note 
that 8: = S,u,/v = 4443. Velocities are in terms of either u, or the free-stream velocity 
U, = 2024 at the inflow plane, a little upstream of the trailing edge. The unit of time S,/u, is 
also convenient; the large-eddy lifetime in the boundary layer around the slicing plane, estimated 
as 6/u,, was 7.78,/u, = 345v/u;. 

The time step in the precursor (boundary layer) simulation was 0~003858,/u, and in the 
successor (wake) simulation O~OOO968,/u,. Since the time step in the successor simulation was a 
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quarter the size of that used in the precursor simulation, each data slice was used as input four 
times without modification: the inflow velocities specified for the wake simulation did not alter 
for four time steps, being fixed to the values of the data slice corresponding to that time interval 
in the precursor simulation. 

The boundary layer simulation was run for an extended period and had reached a statistically 
stationary state before data slicing was initiated. The data slices from the boundary layer 
simulation were gathered in advance. Data from temporally well-separated periods of the 
boundary layer simulation were used to provide uncorrelated boundary layer inflow specifica- 
tions for the upper and lower halves of the inflow boundary of the wake simulation. 

The wake simulation was started with zero flow throughout the computational volume: an 
impulsive acceleration was experienced at the first time step as the first data slice was imposed 
as inflow. The simulation was then run for 28,800 time steps (7200 inflow data slices or 27.79,/ur) 
to allow the turbulent wake to become properly established. During this time the free-stream 
flow covered 5549, and therefore passed through the successor computational box about three 
times. It was considered that this was sufficient time for the turbulent wake to become established. 
The wake simulation was then continued for a further 67,200 time steps (64*69,/u,), during which 
time the flow fields were sampled every 40 time steps. The statistics to be presented therefore 
include 1680 samples. The largest CFL numbers were about 0.23, the principal contribution to 
the CFL number coming from the u-component of velocity downstream of the trailing edge. 
The viscous number in these computations was very small. The error in the continuity was 
normally less than lo-", which is larger than the rounding accuracy for 64 bit computations 
only because of error accumulation in the cyclic reduction solver. 

The simulation occupied 7.9 Mwords on a Cray XMP and each time step took 3.8 s of CPU 
time, rising to 4.5 s when the full statistical package, including computation of all Reynolds stress 
transport terms, was in operation. The computation of the statistics occupied 16% of the 
computer usage, but since it was only being performed every 40 time steps, it is clear that this 
aspect of the simulation was very expensive. The complete simulation of the wake required 115 h 
of CPU time. The precursor simulation of the boundary layer required an additional 40 h of CPU 
time, excluding prior study and conditioning of the boundary layer simulation. The sustained 
processing rate of the code was over 100 Mflops and the total number of floating point operations 
involved was of the order of 5 x 1013. 

3.2. Test of the code 

The code was tested by imposing Blasius profiles at the inlet plane and observing the 
subsequent development of a Von Karman vortex street (Figure 2). This allowed a check to be 
made of the innovative aspects of the computation, including outflow and stress-free boundary 
conditions and the method of imposing inflow conditions. The mesh was 31 x 64 and the 
computation box was eight times longer than its height. The third dimension was also computed 
but no three-dimensionality was detected in the resulting flow. At the trailing edge the Reynolds 
number based on momentum thickness, Re,, was 305, Re, was 800 and Re, was 211,000 for 
the test run discussed below. 

Regularly spaced vortices alternating above and below the centreline developed in this test 
simulation. The ratio between the horizontal separation of vortices on the same side and the 
separation between the upper and lower vortices is close to 7, compared with a corresponding 
ratio of about 5 found in the photographs of Heinemann et dZ3 The estimation of the Strouhal 
number S of the vortex street is complicated by the absence of a natural length scale associated 
with the generation of the vortices; the plate thickness is nominally zero and the smallest 
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cross-stream mesh spacing is unlikely to be the important governing length scale, being very 
much smaller than the integral length scales of the laminar boundary layer. Basing the Strouhal 
number on twice the thickness of the boundary layer at the trailing edge, 26, we find 
S = 26n/U, = 0.21, which is very similar to the values quoted by Heinemann et at similar 
Reynolds numbers and low Mach numbers. Basing the Strouhal number on the initial displace- 
ment thickness of the wake, which is perhaps more realistic, give lower values of S around 0.07. 
We have assumed the n / U ,  is equal to the streamwise spacing of the same-side vortices. 

3.3. Integral parameters 

The precursor turbulent boundary layers were produced by specifying a Blasius profile at the 
inlet plane close to the surface, overlaid with a high level of pseudorandom disturbance in the 
free stream, in the manner reported by Yang and Voke." The high level of free stream 
disturbance produced an immediate transition to turbulence in the boundary layer. The integral 
characteristics of the layer move towards those expected in a young turbulent boundary layer, 
with a typical turbulent shape factor, friction coefficient and growth rate. The free stream 
disturbances decay rapidly at first, then more slowly as the physical correlations of decaying 
grid turbulence are established. At the slicing plane the free-stream turbulence level u'/U, is less 
than 1%. 

In the wake simulation the momentum thickness grows slowly up to the trailing edge, as we 
expect. At the trailing edge the momentum thickness Reynolds number Reh = 908. The wake 
simulation beyond the trailing edge covers a steamwise distance of 1809,, which corresponds 
to a distance well beyond the near wake as defined by Ramaprian et and into the 
intermediate wake which they assume extends from x = 259, to about x = 3509,. It does not 
reach the far-wake region in which the wake has forgotten its origin and achieved an asymptotic 
state. 

Since neither simulation allowed flow through the side boundaries, a small pressure gradient 
exists which changes the outer flow. In the boundary layer simulation this results in an increase 
in the outer flow velocity as the displacement thickness of the boundary layer increases, 
corresponding to a small favourable pressure gradient. In the wake the displacement thickness 



NUMERICAL SIMULATION OF A PLANE TURBULENT WAKE 387 

0 50 100 150 
X i + ,  

Figure 3. Shape factor h*/9,, (upper curve), momentum thickness 919, (middle curve) and centreline velocity V J V ,  
(lower curve) of the wake. Lines, present results; circles, Chevray and K o v a ~ n a y ? ~  triangles, Andreopoulos and 

BradshawZ6 

of the inner flow declines as the wake fills in and the outer flow decelerates under the influence 
of a small adverse pressure gradient. 

The Reynolds number based on momentum thickness at the trailing edge, Resn, was about 
900 and hence lower than that of the available experimental data, which cover a range of Re, 
above 1500. We have made comparisons with Chevray and Kovasnay” whose measurements 
were at Resn = 1580 and with Andreopoulos and BradshawZ6 at Re, = 13600. 

In a normal free wake the displacement thickness alters but the absence of any free-stream 
pressure gradient or other forces beyond the trailing edge ensures that the momentum thickness 
is constant there. We find that the momentum thickness 9 in the simulation increases noticeably 
just beyond the trailing edge (Figure 3), rising by about 4% over a distance of the order of 5S0. 
I t  roughly maintains this level over the remainder of the wake simulation. The reasons for the 
initial rise just beyond the trailing edge are discussed below. The shape factor H = 6‘/9 behaves 
just as expected in the wake (Figure 3), its decline agreeing well with experiments at  higher 
Reynolds numbers. The third curve in Figure 3, showing the growth of the centreline velocity, 
suggests that our simulated wake fills in rather more rapidly than the experiments at higher 
Reynolds numbers. 

3.4. Mean pow characteristics 

The mean streamwise, normal and spanwise velocities are referred to as U, V and W 
respectively. The U-profiles shown in Figure 4 at stations corresponding to those of Chevray 
and Kovasnay” are qualitatively very similar to those found experimentally. Because the rate 
at which the centreline velocity fills in is different from that found by either Andreopoulos and 
BradshawZ6 or Chevray and Kovasnay,” we have not overlaid their experimental points on 
these graphs. A detailed investigation of the behaviour of the mean U in the inner boundary 
layer and near wake” shows that the overall behaviour of U is as expected, with a rapid rise 
in U as the skin friction vanishes at the trailing edge. A small but distinct ridge in the streamwise 
velocity occurs around the transverse plane passing through the trailing edge; the increment is 
quite small compared with the free-stream velocity. It dies out completely in the far field. To 
understand the origin of this ridge, we must also look at  the mean V and pressure fields. 
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Figure 4. Profiles of mean streamwise velocity U / U ,  at ~19, = 0 (solid), 9 (close dotted), 34 (wide dotted) and 87 (dashed) 

The rapid rise in Ujust beyond the trailing edge of the plate is the dominant feature driving 
the behaviour of the flow in that region. The large positive value of d U / d x  must give rise to a 
corresponding negative value of d V / d y ;  this is confirmed by the simulation. The normal velocity 
V is zero on the intruding plate and grows away from the plate in the boundary layer, being 
slightly negative for y c 0 and positive for y > 0. In the wake this pattern is reversed, with the 
decreasing displacement thickness pulling flow inwards; V is slightly positive for y < 0 and 
negative for y > 0. At the trailing edge the large positive dU/ax  produces an antisymmetric ridge 
in V ,  the peak V being 2% of U,. Approaching the trailing edge, the flow therefore encounters 
a line of positive d U / d x  closely followed by a line of negative dU/dx :  this is the origin of a small 
ridge in U coinciding with the position of the V ridge. The acceleration of U and the subsequent 
deceleration supply the mass flux for the inward V ,  which in turn supplies the mass flux required 
by the rapidly filling central wake. The mean W is very small, as we expect in a spanwise 
homogeneous mean flow: the above analysis therefore need only take account of U and V .  

The inner wake fills in rapidly, because the shear induced by the wall produces a large turbulent 
transport of momentum towards the centreline. The resulting acceleration of the flow produces 
a region of very low pressure, sucking in the surrounding fluid to supply the increasing mass 
flux. The central region immediately downstream of the trailing edge acts rather like a mass 
sink in this respect. If the surrounding flow pattern were dictated entirely by mass conservation, 
we should see this reflected in the shape of the pressure field, whose gradient produces the 
required changes in U and V The simulation indeed shows a definite increase in the favourable 
pressure gradient in the last 89, before the trailing edge and a rather more precipitate adverse 
gradient as the pressure recovers in the first 89, before the trailing edge, at least off the centreline: 
the recovery is much slower along the centre of the wake. The lowest pressure occurs fractionally 
before the trailing edge, on the surface of the plate. 

The striking pattern of the pressure field accords with the analysis given above of the mean 
flow in the central region and close to the trailing edge. There is a hole in P, aligned with the 
V ridge, which dies out progressively in the far field and produces net flow towards the plane 
of the trailing edge and inwards. It is  interesting to note that the pressure field opposes the 
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infilling of the inner wake, which is evidently due solely to turbulent and viscous momentum 
transport induced by the mean shear. 

The strong adverse pressure gradient occurs in the same x-interval as the 4% increase in 
momentum thickness. The other forces act merely to redistribute momentum, since downstream 
of the trailing edge they cannot create or destroy it. The adverse pressure gradient, however, 
produced an overall loss of momentum even while the centre of the wake is rapidly filling in. 
It is therefore possible for the momentum thickness to increase while the displacement thickness 
is falling. 

3.5. Turbulence characteristics 

The u’-profiles (Figure 5) reveal one source of disagreement in comparing the simulation results 
with the experiments. The intensity does not fall to zero in the free stream owing to the 
presence of residual free-stream turbulence from the precursor simulation. A side-effect of this 
which is of greater significance than the small free-stream level itself in the spread in the main 
intensity profiles, which extend out beyond y = 109,, even for the lower values of x/9,. The 
U-profiles in Figure 4 do show a slight spread beyond y = 109,, but the difference is more 
obvious for the fluctuation; our u’ at y = 109, is over 2% of We, rising to over 3% at the 
streamwise position x = 879,, while the experimental measurements of Chevray and Ko- 
vasnay” show values of about 1% and hardly any rise even at their x = 8690 station. The 
peaks in the u’-profiles move away from the centreline as we move downstream in a familiar 
manner, but in general we find the positions of the peaks systematically further from the 
centreline than the peaks in the measurements of Chevray and Kova~nay.~’  The exception is 
at the x = 349, station, where both the position and magnitude of the peak agree well. 

Not all the features of importance are picked up by these graphs. Detailed study2’ of the u 
intensity reveals two ‘horns’ occurring just downstream of the trailing edge, representing an 
increase in u‘~ of about 10%. They are neatly aligned with the peaks in the boundary layer 
intensity profiles and with the plane of the trailing edge, but their influence extends out beyond 
y = f29, and some distance downstream. The peak value of u” is almost 10u: very close to 
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Figure 5. Profiles or RMS fluctuation u’/U, at x/S0 = 0, 9, 34 and 87 (as Figure 3) 
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Figure 6. Profiles of RMS fluctuation u‘/U, at x/S, = 0, 9, 34 and 87 (as Figure 3) 

the centreline and 0.759, downstream of the trailing edge. The presence of the horns strongly 
suggests that in spite of the nominally zero thickness of the plate, some form of shedding is 
taking place from the trailing edge. 

The u’-profiles in  Figure 6 show still more interesting features. In contrast with the experi- 
mental profiles, the simulation has a sharp rise in u’ as we pass the trailing edge, and for the 
x = 99, curve a distinct central peak seems to be superimposed. As with the u’-profiles, the 
o‘-profiles all fall slowly and the level at y = 109, is about 2%. The free-stream value is clearly 
non-zero. In general the fluctuation levels are higher than those found experimentally. More 
detailed study shows a striking central peak in ut2 overriding the normal central trough of u” 
in a small region immediately downstream of the trailing edge. The maximum value of u” is 
4.5~:  29, downstream of the trailing edge. It is hard to believe that this rapid rise in u‘ from a 
zero value in such a short distance is unconnected with the horns in the u intensity in the same 
locality, again suggesting that shedding is taking place. 

The lateral intensity level w ‘ ~  is slightly lower, the largest value of W” being 2.8~: at the same 
streamwise location as the u” peak, but with a suggestion of enhancement off the centreline. 
The actual peaks (not shown) are the same distance from the centreline as the u ’ ~  horns. Clearly 
there is coupling between these phenomena found in the three velocity fluctuations close to the 
separation point. Further study will be required to understand fully the interactions between 
the three components, but the data presented here suggest that three-dimensional shedding is 
taking place in a small region just downstream of the trailing edge. This hypothesis is supported 
by vector plots of the instantaneous u’ fluctuations in the same region (Figure 7). 

The picture that is emerging of a region of high turbulent activity, partially coherent in nature, 
just beyond the trailing edge is supported by the initial analysis of the Reynolds stress 
transport. The terms in the transport equation for T , ~  have been computed approximately. These 
terms are higher-order and tend to require longer periods of sampling to obtain adequate 
statistical convergence. Also, owing to the staggered mesh used for the simulation, the correct 
definition of the algorithm for computing most of the terms is ambiguous: we have interpolated 
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Figure 7. An instantaneous fluctuating flow field: vectors of (u’, IJ’). The region x = 3.48 to 4.45, y = -0.038 to 0.027. 
i = 1.0 is shown stretched so that the meshes are evenly distributed. The solid line is the trailing edge 

all three velocities and the velocity gradients to the centre of the mass/pressure cells before 
computing the terms, which is a straightforward approach though it cannot reproduce the precise 
balance of the analytic transport equation. A residual term is present representing interpolation 
and differing errors, which cannot be interpreted as part of any of the individual terms. This 
error is quite low over most of the domain, but unfortunately has large peaks in the region that 
is the primary focus of interest just downstream of the trailing edge. Details of the behaviour 
of the terms, including the error term, are given in Reference 27. 

The convective transport has a peak just downstream of the trailing edge, but the overall 
contribution from this term is not large. The diffusive transport is very much larger and shows 
a highly localized antisymmetric peak very close to the trailing edge. The peaks are comparable 
in size with the diffusive transport in the boundary layer upstream and of the same sign. This 
is not unexpected, since the instability giving rise to the shedding produces a large negative 
u-gradient of T~~ across the centreline in a region of strong turbulent activity. The sudden 
disappearance of the plate as the flow passes the trailing edge results in these adjacent regions 
of opposite T~~ being brought into contact. 

The production of stress in the region is concentrated into a shallow pair of antisymmetric 
peaks aligned with the position of the maxima of turbulent fluctuations. The pressure strain 
term is of particular interest. The antisymmetric pattern in the boundary layer upstream is 
reversed in the region of the shedding, though the inverted peaks are less sharp than was the 
case for the diffusive transport. The peak value is large enough to represent an important 
contribution to the stress balance in a small region in the near wake, though there is some doubt 
as to the reality of the reversal of the pressure strain, since it no longer balances the large diffusive 
transport. The mismatch between the two is accounted for by the error term. Since the 
computation of the pressure strain and the pressure part of the diffusive transport terms involves 
a number of ambiguous interpolations, it is likely that the errors necessarily generated in 
computing them contribute significantly to the overall imbalance. 

The viscous dissipation of Reynolds stress T , ~  is also found to peak in the same way in two 
antisymmetric lobes centred on the positions of maximum stress. The numerical values of the 
peaks are hardly larger than those in the boundary layer. We find that there is a rough balance 
between the production and viscous dissipation in the very near wake where we suppose shedding 
to be taking place, in contrast with the situation in the boundary layer where the viscous 
dissipation close to the wall is larger than the production and is fed by the transport terms. 
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It is evident that the principal Reynolds stress just beyond the trailing edge is being produced 
locally, at the same time as it is being transported by diffusion and is being redistributed into 
other components of the Reynolds stress. It is difficult to draw firm conclusions because of the 
errors involved in computing these types of quantities from staggered velocity components, 
errors which unfortunately appear to be most severe in the region of the shedding; a method 
of extracting more reliable estimates of transport terms in these simulations is the subject of 
current research. 

4. CONCLUSIONS 

The numerical techniques introduced to allow the simulation of the turbulent wake behind a 
flat plate appear to have been very successful. We have devised methods for transferring 
turbulence data from one simulation to another with a different mesh distribution and for dealing 
in an efficient though approximate way with an intruding solid trailing edge within a simulation. 
We have also developed, tested and utilized in the simulation advective boundary conditions. 
All these techniques appear to have potential for further development and use. 

A laminar test run produced a Von Karman vortex street very similar to those found 
experimentally. The simulated turbulent wake has many of the statistical characteristics observed 
experimentally at similar or higher Reynolds numbers, apart from effects arising from the 
presence of some residual free-stream turbulence in the simulation. We also observe that the 
simulated turbulent wake fills in more rapidly along the centreline just beyond the trailing edge 
than the experimental wakes. Some evidence has been presented that indicates that three- 
dimensional shedding is taking place from the trailing edge in a small region just downstream. 
This gives rise to some striking patterns of peaks in the turbulence intensities and stress transport 
terms. 

Current work aims to improve upon the results reported here by performing a simulation 
using inflow boundary layer data whose credibility is assured through close agreement with 
experiment. Higher mesh resolution, together with an appropriate subgrid-scale model, should 
give further confidence in the accuracy of the simulation. A method is under development for 
computing terms in balance equations that guarantees that the sum of the terms tends to zero 
in the limit as the number of statistical samples increases. 
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